
HOW THE MULTI-VARIABLE CHAIN RULE (CASE 1 VERSION)
FOLLOWS FROM THE DIFFERENTIAL dz

Given a function z = f(x, y) of two variables where x = x(t) and y = y(t) are also functions
of t, a change in t value, say by ∆t, produces a change ∆x in x-value and a change ∆y in
y-value, which ultimately causes a change ∆z in z-value.

The Total Differential Principle says that

∆z ≈ dz =
∂z

∂x
· dx +

∂z

∂y
· dy.

In any application, dx = ∆x and dy = ∆y.

So,

∆z ≈ dz =
∂z

∂x
∆x +

∂z

∂y
∆y.

Now,
dz

dt
= lim

∆t→0

∆z

∆t
= lim

∆t→0
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1

∆t

)
· ∆z.

using the differential approximation of ∆z by dz, these limits then are equal:
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)
So,
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)
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